
Journal of Engineering Mathematics (2005) 51: 1–13

Non-Newtonian effects on lubricant thin film flows
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Abstract. An analysis of non-Newtonian effects on lubrication flows is presented based on the upper-convected
Maxwell constitutive equation, which is the simplest viscoelastic model having a constant viscosity and relaxation
time. By employing characteristic lubricant relaxation times in all order of magnitude analysis, a perturbation
method is developed to analyze the flow of a non-Newtonian lubricant between two surfaces. The effect of vis-
coelasticity on the lubricant velocity and pressure fields is examined, and the influence of minimum film thickness
on lubrication characteristics is investigated. Numerical simulations show a significant enhancement in the pres-
sure field when the minimum film thickness is sufficiently small. This mechanism suggests that viscoelasticity does
indeed produce a beneficial effect on lubrication performance, which is consistent with experimental observations.
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1. Introduction

A fascinating and largely-unresolved problem in tribology concerns the effect of viscoelasti-
city on lubrication-flow characteristics. This problem has been tackled since the mid-1950s
with the appearance of the so-called multigrade oils [1, pp. 111–114], [2, Chapter 1], [3,
Chapter 3], [4, Chapter 6], and has recently taken on added significance with the transition to
lubricants of yet lower viscosity for improved energy efficiency [5, 6]. Any factor influencing
load capacity and wear in journal bearings is clearly of renewed importance; consequently,
there are good practical reasons to reopen the general question of viscoelastic effects on
lubrication.

Since the mid 1950s, the addition of polymers to mineral oils has become a well estab-
lished practice. These additives cause the resulting lubricants to become non-Newtonian and
viscoelastic [4, pp. 292–334] , [7]. Even in the simplest flow situation, it is necessary to
consider more than the usual shear-stress component; indeed, the mechanical behaviour of
these lubricants is potentially far more complicated than that of mineral-oil-based lubricants,
which may be regarded as Newtonian fluids. It is known that polymeric-additive-containing
lubricants possess a characteristic relaxation time, λ, which is the ratio of the viscosity to the
elastic modulus. For lubricating oils, the fluid relaxation times might be expected to vary from
10−3 s to 10−6 s [1, pp. 50–53], [7, 8]. If a lubrication process time is of the same order, one
could expect strong time-dependent effects. The Deborah number De = λ/T can be used to
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measure such time dependence, where T is a characteristic time of the flow process under
consideration [4, pp. 226–227], [8].

Attempts to interpret this time-dependent effect on the basis of a shear-dependent viscosity,
or based on the different heat-transfer characteristics of polymeric lubricants, have proved
largely unproductive, and the viscoelastic behaviour of the lubricants has been proposed as the
most likely cause for the improvements in performance (see, for example, [4, Chapter 6], [7],
[9, Chapter 10]). Despite popular belief and some experimental evidence with real lubricants
[7], it appears that unequal normal stresses and memory effects may be relatively insignificant
in automotive journal hearings [4, Chapter 6]. As a consequence, one might superficially
expect that, at high shear rates encountered in well-designed optimally loaded hearings, the
behaviour of multi-grade oils may not be greatly different from that of the low-viscosity base
stock used to formulate oils [3, Chapter 3]. In a recent study, however, values of the minimum
oil-film thickness obtained from direct measurements in an instrumented front-main bearing
of an operating engine were found to correlate not with the high-temperature, high-shear-rate
viscosity alone, but with a combination of the high-temperature, high-shear-rate viscosity and
relaxation time (viscoelasticity). Relaxation times were calculated based on primary normal-
stress measurements made using a Lodge stress-meter [6]. Even though typical fluid relaxation
times are only of the order of microseconds, viscoelasticity can have a measurable and be-
neficial effect on lubrication characteristics [6], and is expected to significantly affect the
minimum oil-film thickness and the coefficients of friction in the journal bearings [6, 10].

There is some controversy as to whether viscoelastic behaviour, as manifested through nor-
mal stress effects, can have any effect at all in lubrication, over and above that which arises as
a result of the shear dependence of the viscosity [11]. It seems clear at present that polymeric
oils are in fact better lubricants than the non-polymeric oils, at least in journal bearings [6,
7]. Specifically, they appear to reduce friction and hearing wear when compared with either
their base oils or mineral oils of comparable low-shear viscosity. To date, attempts to predict
this improvement in performance by invoking non-Newtonian behaviour have been singularly
unsuccessful. It is unlikely that one could have known a priori whether viscoelasticity would
give rise to any beneficial or adverse side effects, although the fact that one of nature’s lubric-
ants, synovial fluid, is an elastic liquid may have been a useful pointer [6, 7, 12]. Over the past
decades, numerous theoretical and experimental studies have been undertaken to determine
whether polymer-improved oils are more efficient than their Newtonian counterparts, even
after the improved viscosity-temperature response has been accommodated [7]. It is fair to
say that the situation is inconclusive and somewhat confused. At best, there have been small
improvements, (see [6, 7, 9]); at worst, any effects have been within the experimental error
(see [10, 11, 13]).

Early studies on thin-film flows have used lubrication theory to derive a coupled system of
equations governing the spatial and temporal evolution of the film thickness [3, Chapter 3], [4,
Chapter 6]. The majority of this work has concentrated on Newtonian fluids for the purpose
of elucidating the fundamental mechanism of thin-film flows in various applications. Reviews
of these works can be found in the books of Tanner [4, pp. 286–441], and Szeri [9, pp. 352–
387]. Recently, much attention has been devoted to non-Newtonian fluids in thin film flows,
since in many practical applications thin films generally exhibit non-Newtonian behaviour, as
described by Dowson et al. [14, Chapter 3], Khayat [15], Tichy [16], Zhang [17] and in refer-
ences cited therein. The aim of this article is to investigate how the presence of viscoelasticity
in the lubricant thin films modifies the flow characteristics.
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The lubricant behaviour will be modelled by the upper-convected Maxwell constitutive
equation, which is the simplest viscoelastic model having a constant viscosity and a con-
stant relaxation time. By employing characteristic lubricant relaxation times in an order-
of-magnitude analysis, we develop a perturbation method to analyze the flow of Maxwell
lubricants between two narrow surfaces and determine whether the viscoelastic properties
have any effects on lubrication characteristics compared with their Newtonian counterparts.
This perturbation scheme is used to derive coupled nonlinear partial differential equations
governing the evolution of the fluid velocity and pressure in thin film flows. The leading-
order problem corresponds to Newtonian lubrication solution [3, Chapter 3], [4, Chapter 6].
Numerical solution on the order of the Deborah number (De) yields corrections to the flow
profiles due to viscoelasticity. Attention will be paid to the mechanisms of the viscoelastic
pressure driving thin-film flow in the presence of viscoelasticity.

In Section 2, we present the governing equations with relevant scalings. In Section 3, we
outline the perturbation method and provide analytical solutions for thin-film flows. In Sec-
tion 4, we present a discussion of our numerical results. Finally, we present some concluding
remarks in Section 5.

2. Mathematical model

One of the simplest viscoelastic fluid models available is the upper-convected Maxwell (UCM)
model incorporating a constant viscosity and relaxation time. In this study, we restrict our
attention to the UCM constitutive model characterized by a small relaxation time, λ. The con-
tinuity, momentum and constitutive equations for the incompressible flow of a non-Newtonian
fluid are, respectively,

∇ · v = 0, (1)

ρ

(
∂v
∂t

+ v · ∇v
)

= −(∇P + ∇ · τ ), (2)

λ
∇
τ +τ = −2ηd,

where

d = 1

2

(∇v + (∇v)T
)

(4)

is the rate-of-deformation tensor, and
∇
τ is the upper-convected derivative defined as

∇
τ= ∂τ

∂t
+ v · ∇τ − (∇v) · τ − τ · (∇v)T . (5)

In Equations (1–5), ρ is the constant lubricant density, v = (u, v) is the lubricant velocity
vector, P is the pressure, τ , is the extra-stress tensor, λ. is the fluid relaxation time, and η is
the lubricant viscosity. In general, λ and η are functions of the local shear rate, pressure and
temperature (see, for example, [13, 18]). In this paper, they are taken to be constant.

A typical two-dimensional thin-film problem is illustrated in Figure 1, where the space
between two surfaces in relative motion is filled with a non-Newtonian fluid. In this prob-
lem, we assume that the characteristic length L in the x-direction is much greater than the
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characteristic length H0 in the y-direction. Under the experimentally accessible processing
conditions, the fluid may be assumed to incompressible and inertialess, and gravitational ef-
fects can be ignored. The continuity and momentum equations for steady flow can be rewritten
in component form as

∂u

∂x
+ ∂v

∂y
= 0, (6)

∂τxx

∂x
+ ∂τxy

∂y
+ ∂P

∂x
= 0, (7)

∂τxy

∂x
+ ∂τyy

∂y
+ ∂P

∂y
= 0. (8)

The constitutive equation (3) in component form reduces to

τxx + λ

(
u
∂τxx

∂x
+ v

∂τxx

∂y
− 2

∂u

∂y
τxy − 2

∂u

∂x
τxx

)
= −2η

∂u

∂x
, (9)

τxy + λ

(
u
∂τxy

∂x
+ v

∂τxy

∂y
− ∂u

∂y
τyy − ∂v

∂x
τxx

)
= −η

(
∂u

∂y
+ ∂v

∂x

)
, (10)

τyy + λ

(
u
∂τyy

∂x
+ v

∂τyy

∂y
− 2

∂v

∂y
τyy − 2

∂v

∂x
τxy

)
= −2η

∂v

∂y
. (11)

With reference to Figure 1, the velocity boundary conditions are

u = U, v = 0, at y = 0, (12)

u = 0, v = 0, at y = H(x), (13)

where we assume that the lower surface is moving in the x-direct ion with velocity U . Equa-
tions (12–13) express the no-slip condition at both surfaces. The pressure boundary condition
requires

P = Pa, at x = 0 and x = L. (14)

Thus, the pressure at the ends of the gap reduces to that of a stationary fluid at ambient pressure
Pa . In fact, there has been a long-standing controversy in the literature on lubrication as to
the best end-pressure boundary conditions, as the choice of these conditions can significantly
affect the prediction for a non-Newtonian model [4, p. 299], [9, Chapter 10], [13]. A discussion
of the pressure boundary conditions at the inlet and the exit can be found in [3, pp.32–98], [4,
Chapter 6], [9, Chapter 10], [19].

The governing equations can be expressed in dimensionless form in terms of the following
dimensionless quantities

x∗ = x

L
, y∗ = y

H0
, u∗ = u

U
, v∗ = v

UH0/L
,

τ ∗
xx = τxx

ηUL/H 2
0

, τ ∗
xy = τxy

ηU/H0
, τ ∗

yy = τyy

ηU/L
,

p = P − Pa

ηUL/H 2
0

, itDe = λU

L
, ε =

(
H0

L

)2

, h(x) = H(x)

H0
.

(15)
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Figure 1. Geometry for a lubricant thin film flow.

The concept of the Deborah number highlights that it is not only the material’s relaxation time,
λ, which determines material behaviour, but also the time-scale of the deformation process.
The Deborah number is zero for a Newtonian fluid and infinite for a Hookean elastic solid [4,
p. 226], [8].

Substituting the dimensionless variables (15) in equations (6–11), and dropping the aster-
isks, we obtain the dimensionless governing equations

∂u

∂x
+ ∂v

∂y
= 0, (16)

∂τxx

∂x
+ ∂τxy

∂y
+ ∂p

∂x
= 0, (17)

ε

(
∂τxy

∂x
+ ∂τyy

∂y

)
+ ∂p

∂y
= 0, (18)

τxx + De

(
u
∂τxx

∂x
+ v

∂τxx

∂y
− 2

∂u

∂y
τxy − 2

∂u

∂x
τxx

)
= −2ε

∂u

∂x
, (19)

τxy + De

(
u
∂τxy

∂x
+ v

∂τxy

∂y
− ∂u

∂y
τyy − ∂v

∂x
τxx

)
= −

(
∂u

∂y
+ ε

∂v

∂y

)
, (20)

τyy + De

(
u
∂τyy

∂x
+ v

∂τyy

∂y
− 2

∂v

∂y
τyy − 2

∂v

∂x
τxy

)
= −2

∂v

∂y
, (21)

and the boundary conditions

u = 1, v = 0, when y = 0, (22)

u = 0, v = 0, when y = h(x), (23)

p = 0, when x = 0, and x = 1. (24)

In most cases, bubbles may appear in the convergent-divergent area, as shown in Figure 1,
due to the pressure falling below the saturation level yielding a cavitation region. Since the
governing equations are no longer valid in such a region, a cavitation model developed either
by the form of variation inequality [19] or by introducing an additional unknown for the fluid
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saturation pressure [13, 18] has to be considered. Details of the cavitation models can be found
in [19], [20, pp. 207–228].

3. Theoretical analysis

In this section, we use a regular perturbation expansion to analyse Equations (16–21) subject
to the boundary conditions (22–24). Specifically, we assume an asymptotic solution in the
form of a double perturbation expansion in powers of ε and De:

u = u[�] + εu[ε] + Deu[D] + O(ε2) + O(De2),

v = v[�] + εv[ε] + Dev[D] + O(ε2) + O(De2),

τxx = τ [�]
xx + ετ [ε]

xx + Deτ [D]
xx + O(ε2) + O(De2),

τyy = τ [�]
yy + ετ [ε]

yy + Deτ [D]
yy + O(ε2) + O(De2),

τxy = τ [�]
xy + ετ [ε]

xy + Deτ [D]
xy + O(ε2) + O(De2),

p = p[�] + εp[ε] + Dep[D] + O(ε2) + O(De2).

(25)

The leading term is the conventional lubrication solution denoted by the superscript [�]. The
two perturbation corrections are denoted by the superscripts [ε] and [De], respectively.

3.1. ZERO-ORDER SOLUTION

Substituting (25) in Equations 16–24), we obtain the following leading-order equations

∂u[�]

∂x
+ ∂v[�]

∂y
= 0,

τ [�]
xx = 0, τ [�]

yy = −2
∂v[�]

∂y
,

τ [�]
xy = −∂u[�]

∂y
,

∂τ [�]
xy

∂y
+ ∂p[�]

∂y
= 0,

∂p[�]

∂y
= 0,

(26)

u[�] = 1, v[�] = 0, when y = 0,

u[�] = v[�] = 0, when y = h(x),

p[�] = 0, when x = 0, 1.

These equations can be readily solved for the velocity and pressure, yielding

u[�] = h2

2

dp[�]

dx

(
y2

h2
− y

h

)
+ 1 − y

h
, (27)

v[�] = dh

dx

(
2 − 3

hm

h

)(
y3

h3
− y2

h2

)
, (28)

dp[�]

dx
= 6

h − hm

h3
, (29)

where
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hm =

∫ 1

0
h−2(x)dx∫ 1

0
h−3(x)dx

. (30)

Integrating Equation (29), we obtain the pressure distribution

p[�](x) = 6
∫ x

0
h−2(s)ds − 6hm

∫ x

0
h−3(s)ds, (31)

which is a solution to the classical Reynolds equation [3, Chapter 3], [4, Chapter 6.2].

3.2. ε-ORDER EQUATIONS

The order-ε solution is now considered. We first substitute (25) in (16–24), and then collect
all order-ε terms to obtain the governing equations

∂u[ε]

∂x
+ ∂v[ε]

∂y
= 0, (32)

τ [ε]
xx = −2

∂u�

∂x
, τ [ε]

xy + ∂u[ε]

∂y
= −∂v�

∂y
, τ [�]

yy = −2
∂v[ε]

∂y
, (33)

∂τ [ε]
xx

∂x
+ ∂τ [ε]

xy

∂y
+ ∂p[ε]

∂x
= 0, (34)

∂τ [�]
xy

∂x
+ ∂τ [�]

yy

∂y
+ ∂p[�]

∂y
= 0, (35)

with the boundary conditions

u[ε] = v[ε] = 0 when y = 0 and y = h(x), (36)

p[ε] = 0 when x = 0 and x = 1. (37)

Substituting τ [�]
xy , τ [ε]

yy , τ [�]
xx and τ [ε]

xy in Equations (34–35), we can simplify the above equations
to

∂p[ε]

∂x
= ∂2u[ε]

∂y2
+ 2

∂2u[�]

∂x2
+ ∂2v[�]

∂y2
, (38)

∂p[ε]

∂y
= ∂2v[�]

∂y2
, (39)

where u[�] and v[�] are given in (27) and (28).

3.3. De-ORDER EQUATIONS

Due to the small size of the ratio H0/L, the ε terms in the stress governing equations (19–20)
can be omitted. Under this approximation we substitute the expansion (25) in the governing
equations (16–21), and collect terms of the same order De to obtain
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∂u[D]

∂x
+ ∂v[D]

∂y
= 0, (40)

τ [D]
xx = 2

∂u[�]

∂y
τ [�]
xy = −2

(
∂u[�]

∂y

)2

, (41)

τ [D]
xy + ∂u[D]

∂y
= −u[�] ∂τ [�]

yy

∂x
− v[�] ∂τ [�]

xy

∂y
+ ∂u[�]

∂y
τ [�]
yy , (42)

τ [D]
yy + 2

∂v[D]

∂y
= −u[�] ∂τ [�]

xy

∂x
− v[�] ∂τ [�]

yy

∂y
+ 2

∂v[�]

∂y
τ [�]
yy + 2

∂v[�]

∂x
τ [�]
xy , (43)

∂τ [D]
xx

∂x
+ ∂τ [D]

xy

∂y
+ ∂p[D]

∂x
= 0, (44)

∂p[D]

∂y
= 0, (45)

and the boundary conditions

u[D] = v[D] = 0, when y = 0 and h = h(x), (46)

p[D] = 0, when x = 0, 1. (47)

Note that the equation τ [�]
xy = − ∂u[�]

∂y
has been used to simplify (41). Similar expressions can

be found in [16].
Substituting τ [D]

xx and τ [D]
xy from Equations (41) and (42) in Equation (44), we obtain

−∂2u[D]

∂y2
− 2

∂

∂x

(
∂u[�]

∂y

)2

− ∂

∂y

(
u[�] ∂τ [�]

xy

∂x

)
− ∂

∂y

(
v[�] ∂τ [�]

xy

∂y

)

+ ∂

∂y

(
τ [�]
yy

∂u[�]

∂y

)
+ ∂p[D]

∂x
= 0.

(48)

From Equation (45), we know that the viscoelastic pressure p[D] is independent of y, hence,
∂2u[D]/∂y2 in Equation (48) is also independent of y. We can integrate (48) twice with respect
to y subject to the boundary conditions (46), and thus obtain a general expression for the
perturbation velocity

u[D] = h2

2

dp[D]

dx

(
y2

h2
− y

h

)
+ 1

h

dh

dx

(
1 − 3

hm

h

) (
2 − 3

hm

h

)(
y2

h2
− y

h

)
. (49)

It should be noted that u[D] is a quadratic function of y only, and the solution given by Tichy
in [16] appears erroneous. A modified Reynolds equation can be derived from the continuity
equation

1

12

d

dx

(
h3 dp[D]

dx

)
= d2h

dx2

(
−1

3
+ 3

2

hm

h
− 3

2

h2
m

h2

)
+ 1

h

(
dh

dx

)2 (
−3

2

hm

h
+ 3

h2
m

h2

)
. (50)
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However, we must still find p[D]. The best way to formulate an equation for p[D] is by integ-
rating the velocity u[D] across the film from y = 0 to y = h(x), to obtain the net flow rate at
order De. In fact, we have not yet used the continuity equation. We do so in an integral form
to derive another constraint on the velocity field, namely

hd =
∫ h(x)

0
u[D](y)dy. (51)

The constant hd is not known at this point. Equation (51) yields an equation for dp[D]/dx as
a function of h(x), dh/dx, hm and hd ,

dp[D]

dx
= −18

h2
m

h5

dh

dx
+ 18

hm

h4

dh

dx
− 4

1

h3

dh

dx
− 12

hd

h3
. (52)

This is simply a first-order ordinary differential equation for the viscoelastic pressure gradient,
which may be integrated to yield a solution, p[D](x). Since this solution satisfies a first-order
equation, a constant of integration appears. A second unknown constant hd appears in Equa-
tion (52). Actually, these two constants can be uniquely defined if the boundary conditions
(47) are imposed. Hence, we obtain an analytical solution for the pressure

p[D](x) = 9

2

(
h2

m

h4
− h2

m

h4
0

)
− 6

(
hm

h3
− hm

h3
0

)
+ 2

(
1

h2
− 1

h2
0

)
− 12hd

∫ x

0

1

h3(s)
ds, (53)

where

hd =
{

3

8

(
h2

m

h4
1

− h2
m

h4
0

)
− 1

2

(
hm

h3
1

− hm

h3
0

)
+ 1

6

(
1

h2
1

− 1

h2
0

)}(∫ 1

0

1

h3(s)
ds

)−1

, (54)

with h0 and h1 being the values of h(x) at x = 0 and x = 1,respectively.

4. Numerical results and discussion

The asymptotic solution to the exact formulation of the UCM model given in (25) is the
sum of the conventional lubrication solution, plus small corrections from the effects of the
geometric parameter ε and the viscoelastic property of fluid (the Deborah number De). In this
section, we only compute the corrections of the solution at order De for the pressure p[D]. The
velocity u[D] then can be calculated directly from Equation (49). In a practical sense, this is
not restrictive because in the lubrication analysis the Deborah number De is always less than
unity [8].

Inspection of the formulations of the pressure given in the previous section shows that the
pressure gradient dp[�]/dx depends only on the function h(x), while, the viscoelastic pres-
sure gradient dp[D]/dx depends not only on the surface slope dh/dx, but also on the surface
curvature d2h/dx2. To examine the influence of the film surfaces and the effect of the Deborah
number, we investigate a viscoelastic thin film under the following contact dimensionless
surface [16]

h(x) = 1 + ax + 1

2
b(x2 − x), (55)

where a is the average curve slope and b is the derivative of the curve slope (curvature). If b is
positive, the surface is concave, otherwise, the surface is convex. In Figure 2, the surface slope
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Figure 2. Profiles of three film surfaces: h1(x) = 1 −
0·5x − 0·5(x2 − x), h2(x) = 1 − 0·5x and h3(x) =
1 − 0·5x + 0·5(x2 − x), respectively.

Figure 3. Plots of the viscoelastic pressure p[D](x) for
slope a = −0·2 and curvatures b = −1, b = 0 and
b = 1.

is a = −0·5, and the curvatures are b = −1, b = 0 and b = 1, respectively. The minimum
film thickness for these surfaces shown in Figure 2 is 0·5, and is attained at the fluid exit point
x = 1. Other surfaces will be discussed in Section 4.2.

4.1. EFFECT OF VISCOELASTICITY ON THE PRESSURE

In this section, we examine the effect of the Deborah number De on the solution of (53).
For simplicity, the dimensionless film surface (55) is used with surface slopes a = −0·2,
a = −0·5 and a = −0·8, and curvatures b = −1·0, b = 0 and b = 1·0, respectively.

First, we examine the effect of a small value of the surface slope a = −0·2 with curvatures
b = −1, b = 0 and b = 1, respectively. Figure 3 shows plots of the viscoelastic pressures for
these parameter values. It is found that for a small surface slope a = −0·2 the viscoelastic
pressures are negative when b = −1 and b = 0, and the maximal pressures, |p[D](x)|, are
attained near the middle of the film. However, for the same surface slope, the viscoelastic
pressure becomes positive when b = 1, and the maximal pressure is attained near the middle
of the film. Clearly, the positions of these three maximum pressures are not coincident, or with
the minimum film thickness point, which is x = 1·0 in this example.

Next, we examine the effect of the mean value of the surface slope a = −0·5 with different
curvatures. The results are illustrated in Figure 4, where the viscoelastic pressures p[D](x) are
plotted with the curvature parameters b = −1, b = 0 and b = 1, respectively. As expected,
the viscoelastic pressures are negative when b = −1 and b = 0. However, when b = 1, the
viscoelastic pressure can be negative or positive, as shown in Figure 4. This feature is not
seen when the surface slope is small. Furthermore, it is found that the maximum viscoelastic
pressures, |p[D](x)|, are attained away from the middle of the film and approach the fluid exit
point, compared with the case of small surface slope, as shown in Figure 3.

Finally, we consider the effect of a large surface slope a = −0·8 with different curvatures.
Figure 5 displays a comparison of the viscoelastic pressures for three different curvatures
b = −1, b = 0 and b = 1. It is interesting that these three pressures are all negative. When
the curvature changes from b = 1 to b = −1, the absolute value of the viscoelastic pressure
increases. This means that the viscoelastic effect on the pressure is much stronger when the
average surface slope is bigger. The positions of the maximum pressures |p[D](x)| are very
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Figure 4. Plots of the viscoelastic pressure p[D] for
slope a = −0·5 and curvatures b = −1, b = 0 and
b = 1.

Figure 5. Plots of the viscoelastic pressure p[D] for
slope a = −0·8 and curvatures b = −1, b = 0 and
b = 1.

close to the fluid exit point. If we look more carefully at the sequences of Figures 3–5, we
find that the absolute values of the viscoelastic pressure increase with increasing surface slope
parameters. For example, given a curvature, say b = −1, the maximum pressure |p[D](x)| is
about 0·85 when the slope is a = −0·8, and about 4·5 when a = −0·5, However, when the sur-
face slope is a = −0·8, the maximum pressure is dramatically increased over 55. Moreover,
the positions of the maximum pressure move gradually from near the middle of the film to
the minimum film thickness point, We suspect that this occurs for the following reason. When
fluid enters the gap, material elements become more extended, As a consequence of this, and
the viscoelasticity of the fluid, the first normal stress difference increases when the minimum
film thickness point is approached. Thus, there will be a gradient in the first normal stress
difference: which is highest near the minimum film thickness point and decreases upstream.
These higher tensions near the point of the minimum film thickness will tend to pull fluid
toward the minimum point. Because more fluid will enter the gap, the maximum pressure may
increase to turn back same of the additional fluid.

In general, the viscoelastic pressure may either increase or decrease depending on com-
binations of the surface slope and its curvature. The larger the surface slope, the stronger the
effect of the viscoelastic pressure. Numerical results obtained in this section demonstrate that
viscoelasticity plays an important role in determining the pressure distributions, and it should
be taken into account in the analysis of thin film flows.

4.2. EFFECT OF THE MINIMUM FILM THICKNESS

As discussed in the previous section, the influence of the film-surface shape is of consid-
erable importance in the thin-film flow analysis. In order to further examine this effect on
the pressure distribution, we consider three different film surfaces in this section: h1(x) =
0·8 − 0·5x + (x2 − x), h2(x) = 0·67 − 0·5x + (x2 − x), and h3(x) = 0·64 − 0·5x + (x2 − x),
plotted in Figure 6. Unlike the surfaces shown in Figure 2, these surfaces have the same
average slope and curvature parameters, but, different minimum film thicknesses attained
at the same point x = 0·75, as shown in Figure 6. In these three surfaces, the minimum
film thicknesses are hmin

1 = 0·2376, hmin
2 = 0·1076, and hmin

3 = 0·0776, respectively. A
comparison of the viscoelastic pressures corresponding to these three surfaces is illustrated
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Figure 6. Profiles of the surfaces described by h1(x) =
0·8−0·5x +(x2 −x), h2(x) = 0·67−0·5x +(x2 −x),
and h3(x) = 0·64 − 0·5x(x2 − x).

Figure 7. Comparison of the viscoelastic pressures cor-
responding to the three different surfaces h1(x), h2(x)

and h3(x) given in Figure 6.

in Figure 7, where it can be seen that all maximum pressures are located almost at the same
point, x = 0·75, which is the position of the minimum film thickness for all three cases.
More important, we also found that the magnitude of the viscoelastic pressure , increases
dramatically with decreasing the minimum film thickness. Indeed, we find that, when the
minimum film thickness is hmin

1 = 0·2376, the maximum pressure is 18 for the surface h1(x);
when the film thickness is hmin

2 = 0·1076, the maximum pressure gradually increases to
hmin

3 = 0·0776. Moreover, when the film thickness decreases to hmin
3 = 0·0776, the maximum

pressure rapidly increases to 242. This behavior clearly suggests that there is a significant
pressure enhancement when the minimum film thickness becomes small. Such a phenomenon
is not observed in Newtonian fluids. It is worth pointing out that this viscoelastic pressure
enhancement has been observed in experimental measurements for a journal bearing system
[6], where it was found that viscoelasticity does indeed produce a measurable effect on lub-
rication characteristics at the higher eccentricity ratios (equivalent to a smaller minimum film
thicknesses). Thus, we observe that our numerical predictions are in good agreement with the
experimental observations in regard to the viscoelastic pressure enhancement in the thin film
flows.

5. Conclusions

In this paper, we have readdressed the question as to whether the viscoelastic properties of
a non-Newtonian fluid can have an effect on lubrication characteristics in thin-film flows.
A perturbation analysis based on the upper-convected Maxwell constitutive equation was
presented by employing the characteristic lubricant relaxation time in an order-of-magnitude
analysis. Despite inherent limitations of the perturbation method, the approach presented here
demonstrates a reasonable way to determine the viscoelastic effects on the lubricant character-
istics in thin-film flows. The calculations in this paper are based on a UCM fluid model with
constant viscosity and relaxation time. Numerical results show that the viscoelastic pressure
depends on combinations of the surface slope and its curvature. When the surface slope is
small, the effect of the viscoelastic pressure is small and hence can be ignored. However,
when the surface slope is large, the influence of the viscoelastic pressure can be strong. Hence,
it should be carefully taken into account in the analysis of thin-film flows. Furthermore, we
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have found that the effect of viscoelasticity on the pressure is dominated by the minimum film
thicknesses. Numerical simulations indicate that there is a significant enhancement of the vis-
coelastic pressure when the minimum film thickness is sufficiently small. This mechanism is
associated with a beneficial effect of viscoelasticity on lubrication characteristics as observed
in experimental measurements [6]. In conclusion, we have addressed and assessed some of
the issues concerning viscoelastic effects on lubricant thin-film flows, although further work
is needed to extend this method to other fluid-flow configurations.
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